3.1.21 \(\int \frac {(a+b \text {csch}^{-1}(c x))^2}{x^3} \, dx\) [21]

Optimal. Leaf size=87 \[ -\frac {b^2}{4 x^2}-\frac {1}{2} a b c^2 \text {csch}^{-1}(c x)-\frac {1}{4} b^2 c^2 \text {csch}^{-1}(c x)^2+\frac {b c \sqrt {1+\frac {1}{c^2 x^2}} \left (a+b \text {csch}^{-1}(c x)\right )}{2 x}-\frac {\left (a+b \text {csch}^{-1}(c x)\right )^2}{2 x^2} \]

[Out]

-1/4*b^2/x^2-1/2*a*b*c^2*arccsch(c*x)-1/4*b^2*c^2*arccsch(c*x)^2-1/2*(a+b*arccsch(c*x))^2/x^2+1/2*b*c*(a+b*arc
csch(c*x))*(1+1/c^2/x^2)^(1/2)/x

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 87, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {6421, 5554, 3391} \begin {gather*} \frac {b c \sqrt {\frac {1}{c^2 x^2}+1} \left (a+b \text {csch}^{-1}(c x)\right )}{2 x}-\frac {1}{2} a b c^2 \text {csch}^{-1}(c x)-\frac {\left (a+b \text {csch}^{-1}(c x)\right )^2}{2 x^2}-\frac {1}{4} b^2 c^2 \text {csch}^{-1}(c x)^2-\frac {b^2}{4 x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcCsch[c*x])^2/x^3,x]

[Out]

-1/4*b^2/x^2 - (a*b*c^2*ArcCsch[c*x])/2 - (b^2*c^2*ArcCsch[c*x]^2)/4 + (b*c*Sqrt[1 + 1/(c^2*x^2)]*(a + b*ArcCs
ch[c*x]))/(2*x) - (a + b*ArcCsch[c*x])^2/(2*x^2)

Rule 3391

Int[((c_.) + (d_.)*(x_))*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[d*((b*Sin[e + f*x])^n/(f^2*n^
2)), x] + (Dist[b^2*((n - 1)/n), Int[(c + d*x)*(b*Sin[e + f*x])^(n - 2), x], x] - Simp[b*(c + d*x)*Cos[e + f*x
]*((b*Sin[e + f*x])^(n - 1)/(f*n)), x]) /; FreeQ[{b, c, d, e, f}, x] && GtQ[n, 1]

Rule 5554

Int[Cosh[(a_.) + (b_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Simp[(c +
 d*x)^m*(Sinh[a + b*x]^(n + 1)/(b*(n + 1))), x] - Dist[d*(m/(b*(n + 1))), Int[(c + d*x)^(m - 1)*Sinh[a + b*x]^
(n + 1), x], x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[m, 0] && NeQ[n, -1]

Rule 6421

Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[-(c^(m + 1))^(-1), Subst[Int[(a + b
*x)^n*Csch[x]^(m + 1)*Coth[x], x], x, ArcCsch[c*x]], x] /; FreeQ[{a, b, c}, x] && IntegerQ[n] && IntegerQ[m] &
& (GtQ[n, 0] || LtQ[m, -1])

Rubi steps

\begin {align*} \int \frac {\left (a+b \text {csch}^{-1}(c x)\right )^2}{x^3} \, dx &=-\left (c^2 \text {Subst}\left (\int (a+b x)^2 \cosh (x) \sinh (x) \, dx,x,\text {csch}^{-1}(c x)\right )\right )\\ &=-\frac {\left (a+b \text {csch}^{-1}(c x)\right )^2}{2 x^2}+\left (b c^2\right ) \text {Subst}\left (\int (a+b x) \sinh ^2(x) \, dx,x,\text {csch}^{-1}(c x)\right )\\ &=-\frac {b^2}{4 x^2}+\frac {b c \sqrt {1+\frac {1}{c^2 x^2}} \left (a+b \text {csch}^{-1}(c x)\right )}{2 x}-\frac {\left (a+b \text {csch}^{-1}(c x)\right )^2}{2 x^2}-\frac {1}{2} \left (b c^2\right ) \text {Subst}\left (\int (a+b x) \, dx,x,\text {csch}^{-1}(c x)\right )\\ &=-\frac {b^2}{4 x^2}-\frac {1}{2} a b c^2 \text {csch}^{-1}(c x)-\frac {1}{4} b^2 c^2 \text {csch}^{-1}(c x)^2+\frac {b c \sqrt {1+\frac {1}{c^2 x^2}} \left (a+b \text {csch}^{-1}(c x)\right )}{2 x}-\frac {\left (a+b \text {csch}^{-1}(c x)\right )^2}{2 x^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.09, size = 100, normalized size = 1.15 \begin {gather*} -\frac {2 a^2+b^2-2 a b c \sqrt {1+\frac {1}{c^2 x^2}} x-2 b \left (-2 a+b c \sqrt {1+\frac {1}{c^2 x^2}} x\right ) \text {csch}^{-1}(c x)+b^2 \left (2+c^2 x^2\right ) \text {csch}^{-1}(c x)^2+2 a b c^2 x^2 \sinh ^{-1}\left (\frac {1}{c x}\right )}{4 x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcCsch[c*x])^2/x^3,x]

[Out]

-1/4*(2*a^2 + b^2 - 2*a*b*c*Sqrt[1 + 1/(c^2*x^2)]*x - 2*b*(-2*a + b*c*Sqrt[1 + 1/(c^2*x^2)]*x)*ArcCsch[c*x] +
b^2*(2 + c^2*x^2)*ArcCsch[c*x]^2 + 2*a*b*c^2*x^2*ArcSinh[1/(c*x)])/x^2

________________________________________________________________________________________

Maple [F]
time = 0.02, size = 0, normalized size = 0.00 \[\int \frac {\left (a +b \,\mathrm {arccsch}\left (c x \right )\right )^{2}}{x^{3}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccsch(c*x))^2/x^3,x)

[Out]

int((a+b*arccsch(c*x))^2/x^3,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))^2/x^3,x, algorithm="maxima")

[Out]

1/4*a*b*((2*c^4*x*sqrt(1/(c^2*x^2) + 1)/(c^2*x^2*(1/(c^2*x^2) + 1) - 1) - c^3*log(c*x*sqrt(1/(c^2*x^2) + 1) +
1) + c^3*log(c*x*sqrt(1/(c^2*x^2) + 1) - 1))/c - 4*arccsch(c*x)/x^2) - 1/2*b^2*(log(sqrt(c^2*x^2 + 1) + 1)^2/x
^2 + 2*integrate(-(c^2*x^2*log(c)^2 + (c^2*x^2 + 1)*log(x)^2 + log(c)^2 + 2*(c^2*x^2*log(c) + log(c))*log(x) -
 (2*c^2*x^2*log(c) + 2*(c^2*x^2 + 1)*log(x) + (c^2*x^2*(2*log(c) - 1) + 2*(c^2*x^2 + 1)*log(x) + 2*log(c))*sqr
t(c^2*x^2 + 1) + 2*log(c))*log(sqrt(c^2*x^2 + 1) + 1) + (c^2*x^2*log(c)^2 + (c^2*x^2 + 1)*log(x)^2 + log(c)^2
+ 2*(c^2*x^2*log(c) + log(c))*log(x))*sqrt(c^2*x^2 + 1))/(c^2*x^5 + x^3 + (c^2*x^5 + x^3)*sqrt(c^2*x^2 + 1)),
x)) - 1/2*a^2/x^2

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 163 vs. \(2 (75) = 150\).
time = 0.40, size = 163, normalized size = 1.87 \begin {gather*} \frac {2 \, a b c x \sqrt {\frac {c^{2} x^{2} + 1}{c^{2} x^{2}}} - {\left (b^{2} c^{2} x^{2} + 2 \, b^{2}\right )} \log \left (\frac {c x \sqrt {\frac {c^{2} x^{2} + 1}{c^{2} x^{2}}} + 1}{c x}\right )^{2} - 2 \, a^{2} - b^{2} - 2 \, {\left (a b c^{2} x^{2} - b^{2} c x \sqrt {\frac {c^{2} x^{2} + 1}{c^{2} x^{2}}} + 2 \, a b\right )} \log \left (\frac {c x \sqrt {\frac {c^{2} x^{2} + 1}{c^{2} x^{2}}} + 1}{c x}\right )}{4 \, x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))^2/x^3,x, algorithm="fricas")

[Out]

1/4*(2*a*b*c*x*sqrt((c^2*x^2 + 1)/(c^2*x^2)) - (b^2*c^2*x^2 + 2*b^2)*log((c*x*sqrt((c^2*x^2 + 1)/(c^2*x^2)) +
1)/(c*x))^2 - 2*a^2 - b^2 - 2*(a*b*c^2*x^2 - b^2*c*x*sqrt((c^2*x^2 + 1)/(c^2*x^2)) + 2*a*b)*log((c*x*sqrt((c^2
*x^2 + 1)/(c^2*x^2)) + 1)/(c*x)))/x^2

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b \operatorname {acsch}{\left (c x \right )}\right )^{2}}{x^{3}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acsch(c*x))**2/x**3,x)

[Out]

Integral((a + b*acsch(c*x))**2/x**3, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))^2/x^3,x, algorithm="giac")

[Out]

integrate((b*arccsch(c*x) + a)^2/x^3, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a+b\,\mathrm {asinh}\left (\frac {1}{c\,x}\right )\right )}^2}{x^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asinh(1/(c*x)))^2/x^3,x)

[Out]

int((a + b*asinh(1/(c*x)))^2/x^3, x)

________________________________________________________________________________________